

November 15 -17, 2005: Town & Country Convention Center - San Diego, CA

Enterprise Service Bus – A Strategy and Infrastructure for Critical Systems of Systems Integration

Ingolf Krueger

Professor,
UCSD Calit2/CSE
November 17, 2005

Background and Motivation

- Dramatic increase in distribution and complexity of software systems
 - Business/Enterprise Systems
 - Technical/Embedded Systems
- Shift from stand-alone to networked systems
- Internet/Wireless Networks have become key enabling technologies for advanced services
- Convergence between business and technical systems:
 - Telecommunication/Networking
 - Web Services
 - Embedded Systems
- Systems of Systems at all levels

Service Engineering for Distributed, Reactive Systems

Example: BioNet

- Effective consequence management of Bio Event
- Cooperative program between DHS and DTRA
- Objectives:
 - Develop interoperable military and civilian concepts of operation
 - Integrate military and civilian capabilities to detect and characterize bio event
 - Provide common situational awareness to ensure timely, effective,
 and consistent response
- Large Scale Systems of Systems Integration

Example: Integration Needs in BioNet

Example: BioNet Architecture/Process

Rapid, Iterative and Incremental Software and Systems Integration

Message/Service Bus Architecture

Properties of an Enterprise Service Bus

- Loosely Coupled
- Event-Driven
- Highly Distributed,
 Scalable
- Security/Authorization
- Abstract Endpoints

- Intelligent Routing
- Data Transformation (inbound/outbound)
- Reliable Messaging
- Multi-Protocol Message
 Bus
- Light Weight

Introduction to CALIT2 ESB

- Service container and messaging platform
- Supports a variety of topologies including ESB
- Highly Scalable; uses SEDA event model
- Transactional; Local and Distributed
- Fault tolerance; Exception management
- Secure; authentication/authorization (Using Spring/Acegi)
- Powerful event routing capabilities

- Support for over 20 messaging protocols/transports
- End-to-End Data
 Transformation
- Management and Monitoring using JMX
- BPEL support
- Addresses the basic need to move any kind of data (not just XML) between services in an organization
- Deployment: JAR, WAR, RAR, EAR.

Summary/Lessons Learned

- Service-Orientation addresses important needs in systems of systems integration
- Requires mastery of
 - Development Process
 - Architectures
 - Infrastructures
 - Applications and Application Domains
- Enterprise Service Bus
 - IT infrastructure for flexible, secure, scalable, rapid systems integration

Summary/Lessons Learned

- Applicable across application domains:
 - Defense
 - Homeland Security
 - Command and Control
 - Automotive
 - Telecommunications
 - Healthcare
 - **—** ...
- Calit2 engaged in software and systems architecture and integration projects
 - BioNet
 - RESCUE
 - WIISARD
 - RUNES/Sensor Networks
 - **–** ...

Software and Systems Architecture and Integration Capability: CALIT2 SAINT Team

- Development and implementation of service- and message-oriented software and systems architectures using proven integration technology.
- Design and implementation of flexible and scalable solutions such as XML-based Web services, web-portals, message busses.
- Use of COTS products, commercial and open source (IBM WebSphere, Groove, .Net, DMIS, JBOSS)
- Technology configured for secure, reliable, trustworthy information exchange under stress.
- Successful integration on large-scale software and systems integration efforts, including decision support system and national template architecture for BioNet.
- Use of DoD Architecture Framework (DoDAF), Federal Enterprise Architecture (FEA), Rational Unified Process Architecture (RUP), and others.
- Tailoring (software) development processes, such as EIA-632, RUP, SCRUM, and XP for scalable, highly iterative, incremental goal-, customer- and user-centric system development and integration.